56=-16t^2+62+4

Simple and best practice solution for 56=-16t^2+62+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 56=-16t^2+62+4 equation:



56=-16t^2+62+4
We move all terms to the left:
56-(-16t^2+62+4)=0
We get rid of parentheses
16t^2-62-4+56=0
We add all the numbers together, and all the variables
16t^2-10=0
a = 16; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·16·(-10)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*16}=\frac{0-8\sqrt{10}}{32} =-\frac{8\sqrt{10}}{32} =-\frac{\sqrt{10}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*16}=\frac{0+8\sqrt{10}}{32} =\frac{8\sqrt{10}}{32} =\frac{\sqrt{10}}{4} $

See similar equations:

| 4/15x=2/15 | | -9x+8=-29x+348 | | (-5(+2n))-6=-81 | | 4-(2x-3)=3(x-6) | | 2x-8=-7x+10 | | 9u-3=-2(u+7) | | (3m+8)/8=(m-1)/3 | | 12+6x=9+3x | | 6(−2q−1)=−(13q+2) | | 2m+12=3m-10 | | 56=8y+3 | | 5p+3-2=-9 | | -6+-1=2x+23 | | 12+5x=100 | | 3(x-2)/2=3(x+6)/10 | | 3x+x-15=30 | | X/6-(3x-1)/4=2x+33/8 | | 9a+9=7 | | 9/36=x/48 | | 1^2=y^2=9 | | 5×+7=2x+7 | | 4x+11=6x-4 | | n-1=78/9 | | 5x+23=2(×-5) | | 128-6x=86 | | -6x-20=-2(x-6) | | 19x-11x=16 | | 8(x+6)=6x+42 | | -6u+44=7(u-3) | | 8^(x+3)=16 | | 2=6(w+2)-8w | | 6z+5(−2z−7)z=-1 |

Equations solver categories